Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Sukeri M. Yusof and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.123$
Data-to-parameter ratio $=18.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(3-Benzoylthioureido)propionic acid

The molecular structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, adopts a cis-trans configuration with respect to the position of the benzoyl and propionic acid groups relative to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds, respectively. In the crystal structure, the molecules are linked by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}, \mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions to form a two-dimensional network perpendicular to the a axis.

Comment

The molecular dimensions of the title compound, (I), are in agreement with other benzoylthiourea derivatives, PhCONHCSNH R, where $R=\mathrm{Ph}$ (Yamin \& Yusof, 2003a), $R=$ p-bromophenyl (Yamin \& Yusof, 2003b) and $R=3,4-$ dimethyphenyl (Shanmuga Sundara Raj et al., 1999). The title compound adopts a cis-trans configuration with respect to the position of the propionic acid and benzoyl groups relative to the S atom across the $\mathrm{C} 8-\mathrm{N} 2$ and $\mathrm{C} 8-\mathrm{N} 1$ bonds, respectively.

The central carbonyl-thiourea moiety ($\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7$), phenyl (C1-C6) and propionic acid [maximum deviation at C 9 of $-0.130(2) \AA$] fragments are planar. The central thiourea moiety makes angles with the phenyl and propionic acid fragments of 52.74 (9) and $75.14(11)^{\circ}$, respectively. The phenyl ring is inclined to the propionic acid fragment by $22.46(13)^{\circ}$. There is one intramolecular hydrogen bond, $\mathrm{N} 2-$ $\mathrm{H} 2 A \cdots \mathrm{O} 1$ (Table 2) and, as a result, a pseudo-six-membered ring $(\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1-\mathrm{H} 2 A)$ is formed. In the crystal structure, the molecules are linked by intermolecular contacts, $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}, \mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1^{\mathrm{ii}}$ and $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{iii}}$ (see Table 2 for symmetry codes) to form a two-dimensional network perpendicular to the a axis (Fig. 2).

Experimental

A solution of 3 -aminopropionic acid $(2.22 \mathrm{~g}, 0.025 \mathrm{~mol})$ in acetone (50 ml) was added dropwise to 50 ml of an acetone solution containing an equimolar amount of benzoyl isothiocyanate in a twonecked round-bottomed flask. The solution was refluxed for about 2 h and then cooled in ice. The white precipitate was filtered off and washed with ethanol-distilled water, then dried in a vacuum (yield 85%). Recrystallization from ethanol yielded single crystals suitable for X-ray analysis.

Received 7 May 2003
Accepted 12 May 2003 Online 16 May 2003

Figure 1
The molecular structure of the title compound, (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Packing diagram of compound (I), viewed down the b axis. The dashed lines denote $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	$Z=2$
$M_{r}=252.29$	$D_{x}=1.334 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo K radiation
$a=4.5868(9) \AA$	Cell parameters from 2840
$b=10.582(2) \AA$	reflections
$c=13.080(3) \AA$	$\theta=1.6-27.5^{\circ}$
$\alpha=94.685(3)^{\circ}$	$\mu=0.26 \mathrm{~mm}^{-1}$
$\beta=91.341(3)^{\circ}$	$T=273(2) \mathrm{K}$
$\gamma=96.759(3)^{\circ}$	Slab, colourless
$V=628.0(2) \AA^{\circ}$	$0.58 \times 0.46 \times 0.18 \mathrm{~mm}$
Data collection	
Bruker SMART APEX CCD area-	2818 independent reflections
\quad detector diffractometer	2363 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.017$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-5 \rightarrow 5$
$T_{\text {min }}=0.866, T_{\text {max }}=0.955$	$k=-13 \rightarrow 13$
7220 measured reflections	$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0612 P)^{2} \\
&+0.1496 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.123$
$S=1.03$
2818 reflections
155 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

S1-C8	$1.6728(17)$	$\mathrm{O} 3-\mathrm{C} 11$	$1.296(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.222(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.317(2)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.199(2)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.454(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$127.95(14)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$123.77(13)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$123.27(15)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$118.97(12)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$117.26(14)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.99	$2.656(2)$	133
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 1^{\text {i }}$	0.86	2.40	$3.047(2)$	132
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S}^{\text {ii }}$	0.86	2.69	$3.5466(16)$	175
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {iii }}$	0.82	1.83	$2.649(2)$	176

Symmetry codes: (i) $2-x, 1-y,-z$; (ii) $1-x,-y,-z$; (iii) $1-x, 1-y, 1-z$.
After their location in a difference Fourier map, all H atoms were placed geometrically and allowed to ride on their parent C or N atoms with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Yamin, B. M. \& Yusof, M. S. M. (2003a). Acta Cryst. E59, o151-o152.
Yamin, B. M. \& Yusof, M. S. M. (2003b). Acta Cryst. E59, o340-o341.

